

LAB 6 – FINAL REPORT

ME 375 – CONTROLS II

Gabriella Giachini

May 1 2022

Introduction

This report summarizes the process to build and program a fully automated two-wheeled robot that

accomplishes “line following” and “herding” behaviors by using infrared (IR) and ultrasonic

sensors. The robot is assembled with a Skitter robot kit and controlled by a myRIO device

programmed by a LabVIEW algorithm.

The first task was to construct the robot and perform several tests and controller design calculations

to obtain its custom closed-loop controller. Then, the behavior of the sensors was studied to later

apply its functionality properly. Finally, a state machine was developed and coded with different

cases for the robot to be able to initially use the IR sensors to follow the line and at the end, switch

to herding where the ultrasonic sensors will be used staying at a set distance away from an object.

State Machine Design

A state machine was designed to best develop the logic for the robot to interact with the given

environment. Five different states were developed: start, go forward, too left, too right,

stop/change, switch to herding that will be triggered by the binary output of IR sensors. The state

machine is shown in the table and graph below. To aid in sharp left or right turns, case 4, which

was originally simply for stopping, is used to recall and go to the previous step.

Table 1: State machine

State Inputs Output

000 001 010 100 011 110 101 111

0 0 X 1 X 1 1 X 1 Start

1 0 2 1 3 1 1 5 5 Forward

2 4 2 1 3 1 1 X 1 Turn right

3 4 2 1 3 1 1 X 1 Turn left

4 * 2 1 3 1 1 X 1 Stop/ Change

5 5 5 5 5 5 5 5 5 Herding

*go to previous case

Figure 1: State Machine Transition Diagram

Controller Design

A closed-loop custom, proportional integral, controller was designed to control the speed of the

robot wheels by using the pole placement method. The goal was to have a 2% settling time of 0.1s,

and overshoot less than 10% and a steady state error of zero. This process yielded the following

controller and was applied as shown in figure 2:

𝐶(𝑠) =
1.22𝑠 + 86.132

𝑠

Figure 2: Proportional Integral Controller

By performing several tests, the gain parameters were slightly changed to account for the already

existing imprecision of the robot (e.g.: motors, and thus wheels, did not turn at the same time).

Moreover, friction compensation was added to the controller to maintain good speed control as it

removes the dead-band error. The friction factor also needed to be tuned as too much friction

would increase the overshoot (and make the robot noisier, more frantic). Therefore the controller

used is the following and was applied as shown in figure 3:

𝐶(𝑠) =
1.225𝑠 + 104.48

𝑠
 𝑤𝑖𝑡ℎ 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 2𝑉

Figure 3: Proportional Integral Controller + Friction Compensation

To perform the line following and herding, the robot uses two different sensors: infrared and

ultrasonic. A FPGA encoder, PWM sensor VI and FPGA sensors bit-file was used to convert the

raw voltage data of the sensors to usable data in LabVIEW. Out of the five IR sensors on the robot,

only the three middle ones were used to aid with line following as they output binary true/false

depending on whether the robot sees white/black.

On the other hand, the ultrasonic sensor measures the time of flight, this is the time that it takes

for the ultrasonic pulses sent by the sensor to hit an object (in front of the robot) and come back.

This sensor is then used for the herding problem as the time of flight is transformed into a distance

which can be used to be at 9inches away from a moving object.

Performance

The robot’s line following, and herding functioning was tested in the track shown in figure 4.

Initially it goes through an almost straight path, then makes a sharp right turn and finally crosses

a white line which shifts the robot into herding mode. In this mode, a moving object is placed in

front of the robot, and it is supposed to move back and forth depending on how far away it is from

the moving object.

Figure 4: Track used for testing the robot

The following experimental data shows the performance of the controller while executing line

following (see Figure 5). One can see that initially the robot has almost a constant velocity, except

for a few peaks at 0 in/s where the robot is adjusting its position to be on the line. In other words,

as the robot gets off track, depending on which side, one of the wheels velocity is set to zero and

the other at a set velocity. This way, it can slightly turn and get on track again. This process is

amplified as the robot takes a sharp right turn and it can be seen in the graph (between 9 and 11s)

as the right wheel remains at 0 in/s for a longer time, while the left wheel remains at 10 in/s to

make the right turn. Finally, at the end of the plot both wheels go to 0 in/s as they reach the

horizontal white line (which triggers herding mode).

Figure 5: Line following velocity plot

The next experimental data shows the performance of the controller while executing herding (see

Figure 6). One can see how the robot moves back and forth, trying to maintain a distance of 9

inches, as the object is moved closer or farther away from it. The plot is not constant as the code

was set up in a way such that the distance determines how fast the robot goes. For example, as the

robot gets closer to being 9 inches away from the object, it goes slower and slower. On the other

hand, when it is very far away it is much faster.

Figure 6: Herding velocity plot

Code Description

The following figure shows the complete code used:

Figure 7: Overall block diagram VI

To aid in the description of the code, it will be separated into different sections. The first is the

upper right corner where one can see the closed loop controller for each motor along with the

friction compensation (see Figure 8). The controller’s input comes from the Encoder Scaling sub-

vi, which is fed the motor’s encoder position, and the controller’s output goes into the Output

scaling VI. The second section is the upper left corner where the data from the sensors is collected

and transformed into usable data types, e.g.: IR sensors data to true/false indicators and ultrasonic

sensor time of flight data to distance values (see Figure 9). And this is fed into the MathScript

block, the last section of the code, where the main code to follow the line, switch to herding,

perform herding and maintain distance is written. This block accepts the sensors data and outputs

the velocity of each wheel into their respective controller. Moreover, feedback nodes are used to

keep track of the next state and previous state values for the next iteration. See figure 10 for the

overall structure and see the compressed file for the full MathScript code. Overall this code

consisted of 5 different cases (states) based on the finite state machine built beforehand (see figure

1), where state 0 starts the robot, state 1 tells the robot to go forward (both wheels move at the

same velocity), state 2 tells the robot to go right (right wheel has no velocity), state 3 tells the robot

to go left (left wheel has to velocity), state 4 is used to either stop or recall previous state to aid in

making sharp turns and finally state 5 is turns on herding mode. Inside each state the logic

developed in the finite state is added to force the robot to change states autonomously.

Figure 8: Controller

Figure 9: Upper left corner with sensors output

Figure 10: MathScript block

The sub-VI used in the main VI helped to apply the controller to the code. One of the sub-VIs is

the encoder scaling VI, which is used to scale and filter the encoder information (see figure 11).

The other sub-VI is the output scaling VI, which scales the motor voltage to a 40MHz clock ticks

and is then sent to the FPGA bit-file.

Figure 11: Encoder Scaling VI

Figure 12: Output Scaling VI

Discussion

Overall the robot performed very well, and it hit all the criteria. The line following was precise

and robust enough where the robot could find the track again once it got lost. However, it was not

very smooth. This could be improved by changing the velocity of each wheel when adjusting to

follow the line (this is not the case when following the line for sharp turns). The current code

makes one of the wheels go at 0 in/s, while the other one is at the specified velocity. To make the

transition smoother, one could decrease the velocity of the first wheel instead of fully stopping it.

On the other hand, the herding code was very robust as well as it sped up when too far and slowed

down when too close. However, the robot shook a lot and was a little unstable while performing

herding and this should be improved.

